1) Motivation
- Different inverse solvers give different results
- Only a few solvers are freely available for academic institutions
- New codes should harness modern HPC to work with complex models and large datasets.

2) Inverse problem
- Mathematical formulation
 \(\mathbf{H}(\mathbf{M}) = \frac{1}{2} \left(\mathbf{f} - \mathbf{G} \mathbf{A} \mathbf{A}^\top \mathbf{G}^\top \mathbf{M} \right) \)
- Target function form \(\mathbf{r} = \left(\sigma \right)^\top \mathbf{M} \left(\mathbf{M} \left(\sigma \right) \right) \)
- Main challenges:
 - Choosing stabilizer \(\Omega \)
 - Solving of the nonlinear optimization problem
 - Choice of parameters:
 - Model parameters
 - Choice of the parameter of \(\mathbf{f} \)

3) Inverse solver ExtrEMeJoyMT
- Fast solving of the nonlinear optimization problem:
 - Choosing parametrization
 - Choosing stabilizer \(\Omega \)

4) True model
- Due to IE-approach only anomaly domain is discretized
- Integration error is removed with like step
- 2D integration of anomaly grid with like step

5) Inversion results
- Both anomalies and bigger ones were inverted together
- 2D integral was added to the response
- Modified domain is \(16 \times 16 \times 3 \times 3 \)
- Different domain discretizations
- For forward modelling \(M = 500, N = 100, d = d_x = d_y = 0.06, d_z = 0.1 \), for inverse modelling \(0.02 \times 0.02 \times 0.06 \) as geometric sequences

6) Mask parameterization
- One element of the inverse domain i.e. \(m_k \) is the union of cells from forward modelling domain
- The rule how to merge cells is defined by researcher

7) Scalability
- Two levels of parallelism are implemented:
 - Parallel domain in different \(\mathbf{R}_k \) responses or \(k \) responses in \(\mathbf{R}_k \)
 - Hierarchical MPI+OpenMP approach
 - Minimum number of used nodes is \(2 \times 2 \times \ldots \times \ldots \times N \)

8) Conclusion
- New 3D inverse solver ExtrEMeJoyMT is presented
- Flexible inversion domain parameterization
 - Whole class of parameterizations
 - Two-modern IEs solvers for forward problems
 - Automatic approach for gradient calculations
- Perfect scalability on HPC

9) Contacts
Mikhail Kruglyakov
Email: m.kruglyakov@gmail.com

10) References